Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

The Multicavity Power Klystron

Klystron amplification, power output, and efficiency can be greatly improved by the addition of intermediate cavities between the input and output cavities of the basic klystron. Additional cavities serve to velocity-modulate the electron beam and produce an increase in the energy available at the output. Since all intermediate cavities in a multicavity klystron operate in the same manner, a representative THREE-CAVITY KLYSTRON will be discussed.

A three-cavity klystron is illustrated in figure 2-8. The entire DRIFT-TUBE ASSEMBLY, the three CAVITIES, and the COLLECTOR PLATE of the three-cavity klystron are operated at ground potential for reasons of safety. The electron beam is formed and accelerated toward the drift tube by a large negative pulse applied to the cathode. MAGNETIC FOCUS COILS are placed around the drift tube to keep the electrons in a tight beam and away from the side walls of the tube. The focus of the beam is also aided by the concave shape of the cathode in high-powered klystrons.

Figure 2-8. - Three-cavity klystron.

The output of any klystron (regardless of the number of cavities used) is developed by velocity modulation of the electron beam. The electrons that are accelerated by the cathode pulse are acted upon by rf fields developed across the input and middle cavities. Some electrons are accelerated, some are decelerated, and some are unaffected. Electron reaction depends on the amplitude and polarity of the fields across the cavities when the electrons pass the cavity gaps. During the time the electrons are traveling through the drift space between the cavities, the accelerated electrons overtake the decelerated electrons to form bunches. As a result, bunches of electrons arrive at the output cavity at the proper instant during each cycle of the rf field and deliver energy to the output cavity.

Only a small degree of bunching takes place within the electron beam during the interval of travel from the input cavity to the middle cavity. The amount of bunching is sufficient, however, to cause oscillations within the middle cavity and to maintain a large oscillating voltage across the input gap. Most of the velocity modulation produced in the three-cavity klystron is caused by the voltage across the input gap of the middle cavity. The high voltage across the gap causes the bunching process to proceed rapidly in the drift space between the middle cavity and the output cavity. The electron bunches cross the gap of the output cavity when the gap voltage is at maximum negative. Maximum energy transfer from the electron beam to the output cavity occurs under these conditions. The energy given up by the electrons is the kinetic energy that was originally absorbed from the cathode pulse.

Klystron amplifiers have been built with as many as five intermediate cavities in addition to the input and output cavities. The effect of the intermediate cavities is to improve the electron bunching process which improves amplifier gain. The overall efficiency of the tube is also improved to a lesser extent. Adding more cavities is roughly the same as adding more stages to a conventional amplifier. The overall amplifier gain is increased and the overall bandwidth is reduced if all the stages are tuned to the same frequency. The same effect occurs with multicavity klystron tuning. A klystron amplifier tube will deliver high gain and a narrow bandwidth if all the cavities are tuned to the same frequency. This method of tuning is called SYNCHRONOUS TUNING. If the cavities are tuned to slightly different frequencies, the gain of the amplifier will be reduced but the bandwidth will be appreciably increased. This method of tuning is called STAGGERED TUNING.

Q.15 What can be added to the basic two-cavity klystron to increase the amount of velocity modulation and the power output? answer.gif (214 bytes)
Q.16 How is the electron beam of a three-cavity klystron accelerated toward the drift tube? answer.gif (214 bytes)
Q.17 Which cavity of a three-cavity klystron causes most of the velocity modulation? answer.gif (214 bytes)
Q.18 In a multicavity klystron, tuning all the cavities to the same frequency has what effect on the bandwidth of the tube? answer.gif (214 bytes)
Q.19 The cavities of a multicavity klystron are tuned to slightly different frequencies in what method of tuning? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business