CONDUCTANCE (G) and is the opposite of resistance. Conductance in transmission lines is expressed as the reciprocal of resistance and is usually given in micromhos per unit length. ">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

Leakage Current

Since any dielectric, even air, is not a perfect insulator, a small current known as LEAKAGE CURRENT flows between the two wires. In effect, the insulator acts as a resistor, permitting current to pass between the two wires. Figure 3-13 shows this leakage path as resistors in parallel connected between the two lines. This property is called CONDUCTANCE (G) and is the opposite of resistance. Conductance in transmission lines is expressed as the reciprocal of resistance and is usually given in micromhos per unit length.

Figure 3-13. - Leakage in a transmission line.

ELECTROMAGNETIC FIELDS ABOUT A TRANSMISSION LINE

The distributed constants of resistance, inductance, and capacitance are basic properties common to all transmission lines and exist whether or not any current flow exists. As soon as current flow and voltage exist in a transmission line, another property becomes quite evident. This is the presence of an electromagnetic field, or lines of force, about the wires of the transmission line. The lines of force themselves are not visible; however, understanding the force that an electron experiences while in the field of these lines is very important to your understanding of energy transmission.

There are two kinds of fields; one is associated with voltage and the other with current. The field associated with voltage is called the ELECTRIC (E) FIELD. It exerts a force on any electric charge placed in it. The field associated with current is called a MAGNETIC (H) FIELD, because it tends to exert a force on any magnetic pole placed in it. Figure 3-14 illustrates the way in which the E fields and H fields tend to orient themselves between conductors of a typical two-wire transmission line. The illustration shows a cross section of the transmission lines. The E field is represented by solid lines and the H field by dotted lines. The arrows indicate the direction of the lines of force. Both fields normally exist together and are spoken of collectively as the electromagnetic field.

Figure 3-14. - Fields between conductors.

CHARACTERISTIC IMPEDANCE OF A TRANSMISSION LINE

You learned earlier that the maximum (and most efficient) transfer of electrical energy takes place when the source impedance is matched to the load impedance. This fact is very important in the study of transmission lines and antennas. If the characteristic impedance of the transmission line and the load impedance are equal, energy from the transmitter will travel down the transmission line to the antenna with no power loss caused by reflection.

Definition and Symbols

Every transmission line possesses a certain CHARACTERISTIC IMPEDANCE, usually designated as Z0. Z0 is the ratio of E to I at every point along the line. If a load equal to the characteristic impedance is placed at the output end of any length of line, the same impedance will appear at the input terminals of the line. The characteristic impedance is the only value of impedance for any given type and size of line that acts in this way. The characteristic impedance determines the amount of current that can flow when a given voltage is applied to an infinitely long line. Characteristic impedance is comparable to the resistance that determines the amount of current that flows in a dc circuit.

In a previous discussion, lumped and distributed constants were explained. Figure 3-15, view A, shows the properties of resistance, inductance, capacitance, and conductance combined in a short section of two-wire transmission line. The illustration shows the evenly distributed capacitance as a single lumped capacitor and the distributed conductance as a lumped leakage path. Lumped values may be used for transmission line calculations if the physical length of the line is very short compared to the wavelength of energy being transmitted. Figure 3-15, view B, shows all four properties lumped together and represented by their conventional symbols.

Figure 3-15. - Short section of two-wire transmission line and equivalent circuit.

answer.gif (214 bytes)

Q.19 Describe the leakage current in a transmission line and in what unit it is expressed. answer.gif (214 bytes)
Q.20 All the power sent down a transmission line from a transmitter can be transferred to an antenna under what optimum conditions? answer.gif (214 bytes)
Q.21 What symbol is used to designate the characteristic impedance of a line, and what two variables does it compare? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business