Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search



Upon completion of this chapter, the student will be able to:

  • Describe, in general terms, the function of a radar synchronizer.
  • State the basic requirements and types of master synchronizers.
  • Describe the purpose, requirements, and operation of a radar modulator.
  • Describe the basic operating sequence of a keyed-oscillator transmitter.
  • Describe the basic operating sequence of a power-amplifier transmitter.
  • State the purpose of a duplexer.
  • State the operational principles of tr and atr tubes.
  • Describe the basic operating sequence of series and parallel connected duplexers.
  • List the basic design requirements of an effective radar receiver.
  • List the major sections of a typical radar receiver.
  • Using a block diagram, describe the operational characteristics of a typical radar receiver.


Any radar system has several major subsystems that perform standard functions. A typical radar system consists of a SYNCHRONIZER (also called the TIMER or TRIGGER GENERATOR), a TRANSMITTER, a DUPLEXER, a RECEIVER, and an INDICATOR. These major subsystems were briefly described in chapter 1. This chapter will describe the operation of the synchronizer, transmitter, duplexer, and receiver of a typical pulse radar system and briefly analyze the circuits used. Chapter 3 will describe typical indicator and antenna subsystems. Because radar systems vary widely in specific design, only a general description of representative circuits is presented in this chapter.


The synchronizer is often referred to as the "heart" of the radar system because it controls and provides timing for the operation of the entire system. Other names for the synchronizer are the TIMER and the KEYER. We will use the term synchronizer in our discussion. In some complex systems the synchronizer is part of a system computer that performs many functions other than system timing.


The specific function of the synchronizer is to produce TRIGGER PULSES that start the transmitter, indicator sweep circuits, and ranging circuits.

Timing or control is the function of the majority of circuits in radar. Circuits in a radar set accomplish control and timing functions by producing a variety of voltage waveforms, such as square waves, sawtooth waves, trapezoidal waves, rectangular waves, brief rectangular pulses, and sharp peaks. Although all of these circuits can be broadly classified as timing circuits, the specific function of any individual circuit could also be wave shaping or wave generation. The operation of many of these circuits and associated terms were described in detail in NEETS, Module 9, Introduction to Wave-Generation and Wave-Shaping Circuits.

Q.1 What is the purpose of the synchronizer in a radar system? wpe1.jpg (945 bytes)
Q.2 What is the purpose of the majority of circuits in a radar system? wpe1.jpg (945 bytes)


Radar systems may be classified as either SELF-SYNCHRONIZED or EXTERNALLY SYNCHRONIZED systems. In a self-synchronized system, the timing trigger pulses are generated in the transmitter. In an externally synchronized system, the timing trigger pulses are generated by a MASTER OSCILLATOR, which is usually external to the transmitter.

The master oscillator in an externally synchronized system may be a BLOCKING OSCILLATOR, a SINE-WAVE OSCILLATOR, or an ASTABLE (FREE-RUNNING) MULTI-VIBRATOR. When a blocking oscillator is used as a master oscillator, the timing trigger pulses are usually obtained directly from the oscillator. When a sine-wave oscillator or an astable multivibrator is used as a master oscillator, pulse-shaping circuits are required to form the necessary timing trigger pulses. In an externally synchronized radar system, the pulse repetition rate (prr) of the timing trigger pulses from the master oscillator determines the prr of the transmitter.

In a self-synchronized radar system, the prr of the timing trigger pulses is determined by the prr of the modulator or transmitter.

Associated with every radar system is an indicator, such as a cathode-ray tube, and associated circuitry. The indicator can present range, bearing, and elevation data in visual form so that a detected object may be located. Trigger pulses from the synchronizer are frequently used to produce gate (or enabling) pulses. When applied to the indicator, gate pulses perform the following functions:

  • Initiate and time the duration of the indicator sweep voltage
  • Intensify the cathode-ray tube electron beam during the sweep period so that the echo pulses may be displayed
  • Gate a range marker generator so that range marker signals may be superimposed on the indicator presentation

Figure 2-1 shows the time relationships of the various waveforms in a typical radar set. The timing trigger pulses are applied to both the transmitter and the indicator. When a trigger pulse is applied to the transmitter, a short burst of transmitter pulses (rf energy) is generated.

Figure 2-1. - Time relationship of waveforms.

0067.GIF (4829 bytes)

This energy is conducted along a transmission line to the radar antenna. It is radiated by the antenna into space. When this transmitter energy strikes one or more reflecting objects in its path, some of the transmitted energy is reflected back to the antenna as echo pulses. Echo pulses from three reflecting targets at different ranges are illustrated in figure 2-1. These echoes are converted to the corresponding receiver output signals as shown in the figure. The larger initial and final pulses in the receiver output signal are caused by the energy that leaks through the duplexer when a pulse is being transmitted.

The indicator sweep voltage shown in figure 2-1 is initiated at the same time the transmitter is triggered. In other applications, it may be more desirable to delay the timing trigger pulse that is to be fed to the indicator sweep circuit. Delaying the trigger pulse will initiate the indicator sweep after a pulse is transmitted.

Note in figure 2-1 that the positive portion of the indicator intensity gate pulse (applied to the cathode-ray tube control grid) occurs only during the indicator sweep time. As a result, the visible cathode-ray tube trace occurs only during sweep time and is eliminated during the flyback (retrace) time. The negative portion of the range-marker gate pulse also occurs during the indicator sweep time. This negative gate pulse is applied to a range-marker generator, which produces a series of range marks.

The range marks are equally spaced and are produced only for the duration of the range-marker gate pulse. When the range marks are combined (mixed) with the receiver output signal, the resulting video signal applied to the indicator may appear as shown at the bottom of figure 2-1.

Q.3 A self-synchronized radar system obtains timing trigger pulses from what source? wpe1.jpg (945 bytes)
Q.4 What type of multivibrator can be used as a radar master oscillator? wpe1.jpg (945 bytes)
Q.5 In an externally synchronized radar, what determines the prr of the transmitter? wpe1.jpg (945 bytes)
Q.6 In figure 2-1, what causes the initial and final pulses on the receiver output signal? wpe1.jpg (945 bytes)


The basic synchronizer circuit should meet the following three basic requirements:

  • It must be free running (astable). Because the synchronizer is the heart of the radar, it must establish the zero time reference and the prf (prr).
  • It should be stable in frequency.
  • For accurate ranging, the prr and its reciprocal, pulse-repetition time (prt), must not change between pulses.
  • The frequency must be variable to enable the radar to operate at different ranges.

Three basic synchronizer circuits can meet the above mentioned requirements. They are the SINE-WAVE OSCILLATOR, the SINGLE-SWING BLOCKING OSCILLATOR, and the MASTER-TRIGGER (ASTABLE) MULTIVIBRATOR.

Figure 2-2 shows the block diagrams and waveforms of these three synchronizers as they are used in externally synchronized radar systems. In each case, equally spaced timing trigger pulses are produced. The prr of each series of timing trigger pulses is determined by the operating frequency of the associated master oscillator.

Figure 2-2. - Timers used in externally synchronized radar systems.

Sine-Wave Oscillator Synchronizer

In the sine-wave oscillator synchronizer (figure 2-2, view A), a sine-wave oscillator is used for the basic timing device (master oscillator). The oscillator output is applied to both an overdriven amplifier and the radar indicator. The sine waves applied to the overdriven amplifier are shaped into square waves. These square waves are then converted into positive and negative timing trigger pulses by means of a short-time-constant RC differentiator.

By means of a limiter, either the positive or negative trigger pulses from the RC differentiator are removed. This leaves trigger pulses of only one polarity. For example, the limiter in view A of figure 2-2 is a negative-lobe limiter; that is, the limiter removes the negative trigger pulses and passes only positive trigger pulses to the radar transmitter.

A disadvantage of a sine-wave oscillator synchronizer is the large number of pulse-shaping circuits required to produce the necessary timing trigger pulses.

Master Trigger (Astable) Multivibrator Synchronizer

In a master trigger (astable) multivibrator synchronizer (view B, figure 2-2), the master oscillator generally is an astable multivibrator. The multivibrator is either ASYMMETRICAL or SYMMETRICAL. If the multivibrator is asymmetrical, it generates rectangular waves. If the multivibrator is symmetrical, it generates square waves. In either case, the timing trigger pulses are equally spaced after a limiter removes undesired positive or negative lobes.

There are two transistors in an astable multivibrator. The two output voltages are equal in amplitude, but are 180 degrees out of phase. The output of the astable multivibrator consists of positive and negative rectangular waves. Positive rectangular waves are applied to an RC differentiator and converted into positive and negative trigger pulses. As in the sine-wave synchronizer, the negative trigger pulses are removed by means of a negative-lobe limiter, and the positive pulses are applied to the transmitter.

Both positive and negative rectangular waves from the astable multivibrator are applied to the indicator. One set of waves is used to intensify the cathode-ray tube electron beam for the duration of the sweep. The other set of waves is used to gate (turn on) the range marker generator.

Single-Swing Blocking Oscillator Synchronizer

In the single-swing, blocking-oscillator synchronizer, shown in view C of figure 2-2, a free-running, single-swing blocking oscillator is generally used as the master oscillator. The advantage of the single-swing blocking oscillator is that it generates sharp trigger pulses without additional shaping circuitry. Timing trigger pulses of only one polarity are obtained by means of a limiter.

Gating pulses for the indicator circuits are produced by applying the output of the blocking oscillator to a one-shot multivibrator or another variable time delay circuit (not shown). Crystal-controlled oscillators may be used when very stable frequency operation is required.

Q.7 What basic circuits meet the requirements of an externally synchronized master oscillator? wpe1.jpg (945 bytes)
Q.8 Name a disadvantage of sine-wave oscillator synchronizers. wpe1.jpg (945 bytes)
Q.9 Which of the basic timing circuits produces sharp trigger pulses directly? wpe1.jpg (945 bytes)

Western Governors University

Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business