magnetic field collapses, inducing a positive voltage at the collector of Q1. These oscillations are not desirable, so some means must be employed to reduce them. The transformer primary may be designed to have a high dc resistance resulting in a low Q; this resistance will decrease the amplitude of the oscillations. However, more damping may be necessary than such a low-Q transformer primary alone can achieve. If so, a DAMPING resistor can be placed in parallel with L1, as shown in figure 3-35.">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

The collector waveform may have an INDUCTIVE OVERSHOOT (PARASITIC OSCILLATIONS) at the end of the pulse. When Q1 cuts off, current through L1 ceases, and the magnetic field collapses, inducing a positive voltage at the collector of Q1. These oscillations are not desirable, so some means must be employed to reduce them. The transformer primary may be designed to have a high dc resistance resulting in a low Q; this resistance will decrease the amplitude of the oscillations. However, more damping may be necessary than such a low-Q transformer primary alone can achieve. If so, a DAMPING resistor can be placed in parallel with L1, as shown in figure 3-35.

Figure 3-35. - Circuit damping

When an external resistance is placed across a tank, the formula for the Q of the tank circuit is Q = R/XL, where R is the equivalent total circuit resistance in parallel with L. You should be able to see from the equation that the Q is directly proportional to the damping resistance (R). In figure 3-35, damping resistor R2 is used to adjust the Q which reduces the amplitude of overshoot parasitic oscillations. As R2 is varied from infinity toward zero, the decreasing resistance will load the transformer to the point that pulse amplitude, pulse width, and prf are affected. If reduced enough, the oscillator will cease to function. By varying R2, varying degrees of damping can be achieved, three of which are shown in figure 3-36, view (A), view (B and view (C).

Figure 3-36A. - Waveform damping. CRITICAL DAMPING

Figure 3-36B. - Waveform damping. UNDER DAMPING

Figure 3-36C. - Waveform damping. OVER DAMPING

CRITICAL DAMPING gives the most rapid transient response without overshoot. This is accomplished by adjusting R2 to achieve a waveform as shown in figure 3-36, view (A). The resistance of R2 depends upon the Q of the transformer. View (A) shows that oscillations, including the overshoot, are damping out.

UNDERDAMPING gives rapid transient response with overshoot caused by high or infinite resistance as shown in figure 3-36 , view (B).

OVERDAMPING is caused by very low resistance and gives a slow transient response. It may reduce the pulse amplitude as shown in figure 3-36, view (C).

The blocking oscillator discussed is a free-running circuit. For a fixed prf, some means of stabilizing the frequency is needed. One method is to apply external synchronization triggers (figure 3-37), view (A) and view (B). Coupling capacitor C2 feeds input synchronization (sync) triggers to the base of Q1.

Figure 3-37A. - Blocking oscillator (synchronized).

Figure 3-37B. - Blocking oscillator (synchronized).

If the trigger frequency is made slightly higher than the free-running frequency, the blocking oscillator will "lock in" at the higher frequency. For instance, assume the free-running frequency of this blocking oscillator is 2 kilohertz, with a prt of 500 microseconds. If sync pulses with a prt of 400 microseconds, or 2.5 kilohertz, are applied to the base, the blocking oscillator will "lock in" and run at 2.5 kilohertz. If the sync prf is too high, however, frequency division will occur. This means that if the sync prt is too short, some of the triggers occur when the base is far below cutoff. The blocking oscillator may then synchronize with every second or third sync pulse.

For example, in figure 3-37, view (A)and view (B) if trigger pulses are applied every 200 microseconds (5 kilohertz), the trigger that appears at T1 is not of sufficient amplitude to overcome the cutoff bias and turn on Q1. At T2, capacitor C1 has nearly discharged and the trigger causes Q1 to conduct. Note that with a 200-microsecond input trigger, the output prt is 400 microseconds. The output frequency is one-half the input trigger frequency and the blocking oscillator becomes a frequency divider.

Q.10 What component in a blocking oscillator controls pulse width? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business