communications. You will find a laser is similar to uhf and microwave power sources and could replace either of them in point-to-point communications. THEORY OF OPERATION Lasers take energy at (or near) the visible light spectrum and convert it to a very narrow and intense beam in the same region. ">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

LASERS

The word LASER is an acronym for light amplification by stimulated emission of radiation. The laser is widely used in industry, and experimental work is being done with it in communications. You will find a laser is similar to uhf and microwave power sources and could replace either of them in point-to-point communications.

THEORY OF OPERATION

Lasers take energy at (or near) the visible light spectrum and convert it to a very narrow and intense beam in the same region. A close relative of the laser is the light emitting diode (LED). The LED takes dc or low frequency ac power and converts the energy into visible light.

The principle of the laser is somewhat similar to that of a very high-Q cavity resonator. Chapter 1 of NEETS, Module 11, Microwave Principles, explains cavity resonators. The laser is shock-excited by a spark transmitter. This transmitter is called a spark transmitter because it uses the discharge of a capacitor through an inductor and a spark gap as a source of rf. While the input energy of the laser covers a wide band of frequencies, the output is on one frequency. Energy outputs of the laser are either INCOHERENT or COHERENT. For example, if you turn on a transmitter with no modulation, you will get coherent radiation. When you connect a noise source to an antenna, the result is incoherent radiation.

Lasers can be either cw or pulsed. Actually, lasers are little different from conventional oscillators. However, the way lasers convert energy from one form to another is quite different. In conventional oscillators, dc power from the collector is converted to rf energy. The frequency is for the most part independent of the molecular or atomic structure of the generator. This is not true for the laser. Laser conversion takes place directly within the molecular structure of a crystal or gas. The external circuits have little effect on actual output frequency. The fact that the light from an LED is always the same color results from similar conditions. In a laser, incoherent light excites the electrons in the atoms to higher energy levels than they normally would have. The new energy states are unstable and the electrons drop down to lower energy levels. Energy is then released in the form of light.

Figure 5-18 shows the ends of the crystal or glass tube laser with light waves reflecting back and forth between two mirrored surfaces. One mirror is only partially reflective, and light energy is transmitted through it to form the light beam. You will find that power sources for lasers include flash tubes or, in the case of diode-type lasers, dc power supplies.

Figure 5-18. - Simple laser.

COMMUNICATIONS APPLICATIONS

High-energy lasers have very small power losses. As a result, a laser with a 2- or 3-inch initial beam can be used to communicate directly with a distant planet. However, from a communications standpoint, they do have some drawbacks. While laser energy is capable of being formed into a very narrow beam, it is still subject to the same difficulties as any other form of light transmission. Fog and other adverse weather conditions can absorb the light. Small atmospheric temperature variations can cause deflection and scattering. An optical waveguide was designed to help overcome this problem. It consists of a thin dielectric fiber clothed by another dielectric coating several wavelengths thick. It has been successfully used to move the beam over considerable distances and around bends. The use of optical waveguides is known as FIBER OPTICS. A number of fibers can be paralleled to reduce the attenuation through the waveguide. This technique has resulted in an inexpensive telephone system with a bandwidth greater than that of previous methods. Researchers are attempting to develop a laser that will operate in the blue-green portion of the visible spectrum. Water offers little attenuation to the blue-green band of frequencies. Because of this, blue-green communications lasers could possibly penetrate the ocean to great depths.

This could give us a very secure undersea communications link.

Q.10 Lasers operate in what portion of the frequency spectrum?answer.gif (214 bytes)
Q.11 What are the two types of lasers? answer.gif (214 bytes)
Q.12 What are the effects of adverse weather on the laser beam? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business