impedance effects. Mutual impedance is an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements.">

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

SPACING. - The lower relative efficiency of collinear arrays of many elements, compared with other multi-element arrays, relates directly to spacing and mutual impedance effects. Mutual impedance is an important factor to be considered when any two elements are parallel and are spaced so that considerable coupling is between them. There is very little mutual impedance between collinear sections. Where impedance does exist, it is caused by the coupling between the ends of adjacent elements. Placing the ends of elements close together is frequently necessary because of construction problems, especially where long lengths of wire are involved.

The effects of spacing and the advantages of proper spacing can be demonstrated by some practical examples. A collinear array consisting of two half-wave elements with 1/2-wavelength spacing between centers has a gain of 1.8 dB. If the ends of these same dipoles are separated so that the distance from center to center is 3/4 wavelengths and they are driven from the same source, the gain increases to approximately 2.9 dB.

A three-dipole array with negligible spacing between elements gives a gain of 3.3 dB. In other words, when two elements are used with wider spacing, the gain obtained is approximately equal to the gain obtainable from three elements with close spacing. The spacing of this array permits simpler construction, since only two dipoles are used. It also allows the antenna to occupy less space. Construction problems usually dictate small-array spacing.

Broadside Arrays

A broadside array is shown in figure 4-26, view A. Physically, it looks somewhat like a ladder. When the array and the elements in it are polarized horizontally, it looks like an upright ladder. When the array is polarized vertically, it looks like a ladder lying on one side (view B). View C is an illustration of the radiation pattern of a broadside array. Horizontally polarized arrays using more than two elements are not common. This is because the requirement that the bottom of the array be a significant distance above the earth presents construction problems. Compared with collinear arrays, broadside arrays tune sharply, but lose efficiency rapidly when not operated on the frequencies for which they are designed.

Figure 4-26. - Typical broadside array.

RADIATION PATTERN. - Figure 4-27 shows an end view of two parallel half-wave antennas (A and B) operating in the same phase and located 1/2 wavelength apart. At a point (P) far removed from the antennas, the antennas appear as a single point. Energy radiating toward P from antenna A starts out in phase with the energy radiating from antenna B in the same direction. Propagation from each antenna travels over the same distance to point P, arriving there in phase. The antennas reinforce each other in this direction, making a strong signal available at P. Field strength measured at P is greater than it would be if the total power supplied to both antennas had been fed to a single dipole. Radiation toward point P1 is built up in the same manner.

Figure 4-27. - Parallel elements in phase.

Next consider a wavefront traveling toward point Q from antenna B. By the time it reaches antenna A, 1/2 wavelength away, 1/2 cycle has elapsed. Therefore energy from antenna B meets the energy from antenna A 180 degrees out of phase. As a result, the energy moving toward point Q from the two sources cancels. In a like manner, radiation from antenna A traveling toward point Q1 meets and cancels the radiation in the same direction from antenna B. As a result, little propagation takes place in either direction along the QQ1 axis. Most of the energy is concentrated in both directions along the PP1 axis. When both antenna elements are fed from the same source, the result is the basic broadside array.

When more than two elements are used in a broadside arrangement, they are all parallel and in the same plane, as shown in figure 4-26, view B. Current phase, indicated by the arrows, must be the same for all elements. The radiation pattern shown in figure 4-26, view C, is always bidirectional. This pattern is sharper than the one shown in figure 4-27 because of the additional two elements. Directivity and gain depend on the number of elements and the spacing between them.

GAIN AND DIRECTIVITY. - The physical disposition of dipoles operated broadside to each other allows for much greater coupling between them than can occur between collinear elements. Moving the parallel antenna elements closer together or farther apart affects the actual impedance of the entire array and the overall radiation resistance as well. As the spacing between broadside elements increases, the effect on the radiation pattern is a sharpening of the major lobes. When the array consists of only two dipoles spaced exactly 1/2 wavelength apart, no minor lobes are generated at all. Increasing the distance between the elements beyond that point, however, tends to throw off the phase relationship between the original current in one element and the current induced in it by the other element. The result is that, although the major lobes are sharpened, minor lobes are introduced, even with two elements. These, however, are not large enough to be of concern.

If you add the same number of elements to both a broadside array and a collinear array, the gain of the broadside array will be greater. Reduced radiation resistance resulting from the efficient coupling between dipoles accounts for most of this gain. However, certain practical factors limit the number of elements that may be used. The construction problem increases with the number of elements, especially when they are polarized horizontally.

Q.32 What is the primary cause of broadside arrays losing efficiency when not operating at their designed frequency? answer.gif (214 bytes)
Q.33 When more than two elements are used in a broadside array, how are the elements arranged? answer.gif (214 bytes)
Q.34 As the spacing between elements in a broadside array increases, what is the effect on the major lobes? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business