Custom Search
 
  

 
LOBE PUMP

The lobe operation as pump uses the same principle of the external gear pump described

Figure 4-7.Lobe pump.

previously. The lobes are considerably larger than gear teeth, but there are only two or three lobes on each rotor. A three-lobe pump is illustrated in figure 4-7. The two elements are rotated, one directly driven by the source of power, and the other through timing gears. As the elements rotate, liquid is trapped between two lobes of each rotor and the walls of the pump chamber and carried around from the suction side to the discharge side of the pump. As liquid leaves the suction chamber, the pressure in the suction chamber is lowered, and additional liquid is forced into the chamber from the reservoir.

The lobes are constructed so there is a continuous seal at the points where they meet at the center of the pump. The lobes of the pump illustrated in figure 4-7 are fitted with small vanes at the outer edge to improve the seal of the pump. Although these vanes are mechanically held in their slots, they are, to some extent, free to move outward. Centrifugal force keeps the vanes snug against the chamber and the other rotating members.

SCREW PUMP

Screw pumps for power transmission systems are generally used only on submarines. Although low in efficiency and expensive, the screw pump is suitable for high pressures (3000 psi), and delivers fluid with little noise or pressure pulsation.

Screw pumps are available in several different designs; however, they all operate in a similar manner. In a fixed-displacement rotary-type screw pump (fig. 4-8, view A), fluid is propelled axially

Figure 4-8.Screw pumps.

in a constant, uniform flow through the action of just three moving parts-a power rotor and two idler rotors. The power rotor is the only driven element, extending outside the pump casing for power connections to an electrical motor. The idler rotors are turned by the power rotor through the action of the meshing threads. The fluid pumped between the meshing helical threads of the idler and power rotors provides a protective film to prevent metal-to-metal contact. The idler rotors perform no work; therefore, they do not need to be connected by gears to transmit power. The enclosures formed by the meshing of the rotors inside the close clearance housing contain the fluid being pumped. As the rotors turn, these enclosures move axially, providing a continuous flow. Effective performance is based on the following factors:

1. The rolling action obtained with the thread design of the rotors is responsible for the very quiet pump operation. The symmetrical pressure loading around the power rotor eliminates the need for radial bearings because there are no radial loads. The cartridge-type ball bearing in the pump positions the power rotor for proper seal operation. The axial loads on the rotors created by discharge pressure are hydraulically balanced.

2. The key to screw pump performance is the operation of the idler rotors in their housing bores. The idler rotors generate a hydrodynamic film to support themselves in their bores like journal bearings. Since this film is self-generated, it depends on three operating characteristics of the pumpspeed, discharge pressure, and fluid viscosity. The strength of the film is increased by increasing the operating speed, by decreasing pressure, or by increasing the fluid viscosity. This is why screw pump performance capabilities are based on pump speed, discharge pressure, and fluid viscosity.

The supply line is connected at the center of the pump housing in some pumps (fig. 4-8, view B). Fluid enters into the pumps suction port, which opens into chambers at the ends of the screw assembly. As the screws turn, the fluid flows between the threads at each end of the assembly. The threads carry the fluid along within the housing toward the center of the pump to the discharge port.

VANE PUMP

Vane-type hydraulic pumps generally have circularly or elliptically shaped interior and flat end plates. (Figure 4-9 illustrates a vane pump with a circular interior.) A slotted rotor is fixed to a shaft that enters the housing cavity through one of the end plates. A number of small rectangular plates or vanes are set into the slots of the rotor. As the rotor turns, centrifugal force causes the outer edge of each vane to slide along the surface of the housing cavity as the vanes slide in and out of the rotor slots. The numerous cavities, formed by the vanes, the end plates, the housing, and the rotor, enlarge and shrink as the rotor and vane assembly rotates. An inlet port is installed in the housing so fluid may flow into the cavities as they enlarge. An outlet port is provided to allow the fluid to flow out of the cavities as they become small.

The pump shown in figure 4-9 is referred to as an unbalanced pump because all of the pumping action takes place on one side of the rotor. This causes a side load on the rotor. Some vane pumps are constructed with an elliptically shaped housing that forms two separate pumping areas on opposite sides of the rotor. This cancels out the side loads; such pumps are referred to as balanced vane.

Usually vane pumps are fixed displacement and pump only in one direction. There are, however, some designs of vane pumps that provide variable flow. Vane pumps are generally restricted to service where pressure demand does not exceed 2000 psi. Wear rates, vibration, and noise levels increase rapidly in vane pumps as pressure demands exceed 2000 psi.

RECIPROCATING PUMPS

The term reciprocating is defined as back-and-forth motion. In the reciprocating pump it is this

Figure 4-9.Vane pump.

back-and-forth motion of pistons inside of cylinders that provides the flow of fluid. Reciprocating pumps, like rotary pumps, operate on the positive principlethat is, each stroke delivers a definite volume of liquid to the system.

The master cylinder of the automobile brake system, which is described and illustrated in chapter 2, is an example of a simple reciprocating pump. Several types of power-operated hydraulic pumps, such as the radial piston and axial piston, are also classified as reciprocating pumps. These pumps are sometimes classified as rotary pumps, because a rotary motion is imparted to the pumps by the source of power. However, the actual pumping is performed by sets of pistons reciprocating inside sets of cylinders.

HAND PUMPS

There are two types of manually operated reciprocating pumpsthe single-action and the double-action. The single-action pump provides flow during every other stroke, while the double-action provides flow during each stroke. Single-action pumps are frequently used in hydraulic jacks.

A double-action hand pump is illustrated in figure 4-10. This type of pump is used in some aircraft hydraulic systems as a source of hydraulic power for emergencies, for testing certain subsystems during preventive maintenance inspections, and for determining the causes of malfunctions in these subsystems.

This pump (fig. 4-10) consists of a cylinder, a piston containing a built-in check valve (A), a piston rod, an operating handle, and a check valve (B) at the inlet port. When the piston is moved

Figure 4-10.Hydraulic hand pump.

to the left, the force of the liquid in the outlet chamber and spring tension cause valve A to close. This movement causes the piston to force the liquid in the outlet chamber through the outlet port and into the system. This same piston movement causes a low-pressure area in the inlet chamber. The difference in pressure between the inlet chamber and the liquid (at atmospheric pressure) in the reservoir acting on check valve B causes its spring to compress; thus, opening the check valve. This allows liquid to enter the inlet chamber.

When the piston completes this stroke to the left, the inlet chamber is full of liquid. This eliminates the pressure difference between the inlet chamber and the reservoir, thereby allowing spring tension to close check valve B. When the piston is moved to the right, the force of the confined liquid in the inlet chamber acts on check valve A. This action compresses the spring and opens check valve A which allows the liquid to flow from the intake chamber to the outlet chamber. Because of the area occupied by the piston rod, the outlet chamber cannot contain all the liquid discharged from the inlet chamber. Since liquids do not compress, the extra liquid is forced out of the outlet port into the system.

PISTON PUMPS

Piston pumps are made in a variety of types and configurations. A basic distinction is made between axial and radial pumps. The axial piston pump has the cylinders parallel to each other and the drive shaft. The radial piston design has the cylinders extending radially outward from the drive shaft like the spokes of a wheel. A further distinction is made between pumps that provide a fixed delivery and those able to vary the flow of the fluid. Variable delivery pumps can be further divided into those able to pump fluid from zero to full delivery in one direction of flow and those able to pump from zero the full delivery in either direction.

All piston pumps used in Navy shipboard systems have the cylinders bored in a cylinder block that is mounted on bearings within a housing. This cylinder block assembly rotates with the pump drive shaft.

Radial Piston Pumps

Figure 4-11 illustrates the operation of the radial piston pump. The pump consists of a pintle, which remains stationary and acts as a valve; a

Figure 4-11.Principles of operation of the radial piston pump.

cylinder block, which revolves around the pintle and contains the cylinders in which the pistons operate; a rotor, which houses the reaction ring of hardened steel against which the piston heads press; and a slide block, which is used to control the length of the piston strokes. The slide block does not revolve but houses and supports the rotor, which does revolve due to the friction set up by the sliding action between the piston heads and the reaction ring. The cylinder block is attached to the drive shaft.

Referring to view A of figure 4-11, assume that space X in one of the cylinders of the cylinder block contains liquid and that the respective piston of this cylinder is at position 1. When the cylinder block and piston are rotated in a clockwise direction, the piston is forced into its cylinder as it approaches position 2. This action reduces the volumetric size of the cylinder and forces a quantity of liquid out of the cylinder and into the outlet port above the pintle. This pumping action is due to the rotor being off-center in relation to the center of the cylinder block.

In figure 4-11 view B, the piston has reached position 2 and has forced the liquid out of the open end of the cylinder through the outlet above the pintle and into the system. While the piston moves from position 2 to position 3, the open end of the cylinder passes over the solid part of the pintle; therefore, there is no intake or discharge of liquid during this time. As the piston and cylinder move from position 3 to position 4, centrifugal force causes the piston to move outward against the reaction ring of the rotor. During this time the open end of the cylinder is open to the intake side of the pintle and, therefore, fills with liquid. As the piston moves from position 4 to position 1, the open end of the cylinder is against the solid side of the pintle and no intake or discharge of liquid takes place. After the piston has passed the pintle and starts toward position 2, another discharge of liquid takes place. Alternate intake and discharge continues as the rotor revolves about its axis-intake on one side of the pintle and discharge on the other, as the piston slides in and out.

Notice in views A and B of figure 4-11 that the center point of the rotor is different from the center point of the cylinder block. The difference of these centers produces the pumping action. If the rotor is moved so that its center point is the same as that of the cylinder block, as shown in figure 4-11, view C, there is no pumping action, since the piston does not move back and forth in the cylinder as it rotates with the cylinder block.

The flow in this pump can be reversed by moving the slide block, and therefore the rotor, to the right so the relation of the centers of the rotor and the cylinder block is reversed from the position shown in views A and B of figure 4-11. View D shows this arrangement. Liquid enters the cylinder as the piston travels from position 1 to position 2 and is discharged from the cylinder as the piston travels from position 3 to 4. In the illustrations the rotor is shown in the center, the extreme right, or the extreme left in relation to the cylinder block. The amount of adjustment in distance between the two centers determines the length of the piston stroke, which controls the amount of liquid flow in and out of the cylinder. Thus, this adjustment determines the displacement of the pump; that is, the volume of liquid the pump delivers per revolution. This adjustment may be controlled in different ways. Manual control by a handwheel is the simplest. The pump illustrated in figure 4-11 is controlled in this way. For automatic control of delivery to accommodate varying volume requirements during the operating cycle, a hydraulically controlled cylinder may be used to position the slide block. A gear-motor controlled by a push button or a limit switch is sometimes used for this purpose.

Figure 4-11 is shown with four pistons for the sake of simplicity. Radial pumps are actually designed with an odd number of pistons (fig. 4-12). This is to ensure that no more than one cylinder is completely blocked by the pintle at any one time. If there were an even number of pistons spaced evenly around the cylinder block (for example, eight), there would be occasions when two of the cylinders would be blocked by the pintle, while at other times none would be blocked. This would cause three cylinders to discharge at one time and four at one time, causing pulsations in flow. With an odd number of pistons spaced evenly around the cylinder block, only one cylinder is completely blocked by the pintle at any one time. This reduces pulsations of flow.

Figure 4-12.Nine-piston radial piston pump.







Western Governors University
 


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business