Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search
 
  

Single-Stage Transmitters

A simple, single-tube cw transmitter can be made by coupling the output of an oscillator directly to an antenna (figure 1-28). The primary purpose of the oscillator is to develop an rf voltage which has a constant frequency and is immune to outside factors which may cause its frequency to shift. The output of this simple transmitter is controlled by placing a telegraph key at point K in series with the voltage supply. Since the plate supply is interrupted when the key is open, the circuit oscillates only as long as the key is closed. Although the transmitter shown uses a Colpitts oscillator, any of the oscillators previously described in NEETS, Module 9, Introduction to Wave-Generation and Wave-Shaping Circuits can be used.

Figure 1-28. - Simple electron-tube transmitter.

Capacitors C2 and C3 can be GANGED (mechanically linked together) to simplify tuning. Capacitor C1 is used to tune (resonate) the antenna to the transmitter frequency. CA is the effective capacitance existing between the antenna and ground. This antenna-to-ground capacitance is in parallel with the tuning capacitors, C2 and C3. Since the antenna has capacitance, any change in its length or position, such as that caused by swaying of the antenna, changes the value of CA and causes the oscillator to change frequency. Because these frequency changes are undesirable for reliable communications, the multistage transmitter was developed to increase reliability.

Multistage Transmitters

The simple, single-tube transmitter, shown in figure 1-28, is rarely used in practical equipment. Most of the transmitters you will see use a number of tubes or stages. The number used depends on the frequency, power, and application of the equipment. For your study, the following three categories of cw transmitters are discussed: (1) master oscillator power amplifier (mopa) transmitters, (2) multistage, high-power transmitters, (3) high- and very-high frequency transmitters.

The mopa is both an oscillator and a power amplifier. Power-amplifying stages and frequency-multiplying stages must be used to increase power and raise the frequency from those achievable in a mopa. The main difference between many low- and high-power transmitters is in the number of power-amplifying stages that are used. Similarly, the main difference between many high- and very-high frequency transmitters is in the number of frequency-multiplying stages used.

MASTER OSCILLATOR POWER AMPLIFIER. - For a transmitter to be stable, its oscillator must not be LOADED DOWN. This means that its antenna (which can present a varying impedance) must not be connected directly to the oscillator circuit. The rf oscillations must be sent through another circuit before they are fed to the antenna for good frequency stability to be obtained. That additional circuit is an rf power amplifier. Its purpose is to raise the amplitude of rf oscillations to the required output power level and isolate the oscillator from the antenna. Any transmitter consisting of an oscillator and a single-amplifier stage is called a master oscillator power amplifier transmitter (mopa), as shown in figure 1-29.

Figure 1-29. - Block diagram of a master oscillator power amplifier transmitter (mopa).

Most mopa transmitters have only one tube amplifier in the power-amplifier stage. However, the oscillator may not produce sufficient power to drive a power-amplifier tube to the power output level required for the antenna. In such cases, the power-amplifier stages are designed to use two or more amplifiers which can be driven by the oscillator. Two or more amplifiers can be connected in parallel (with similar elements of each tube connected) or in a push-pull arrangement. In a push-pull amplifier, the grids are fed equal rf voltages that are 180 degrees out of phase.

The main advantage of a mopa transmitter is that the power-amplifier stage isolates the oscillator from the antenna. This prevents changes in antenna-to-ground capacitance from affecting the oscillator frequency. A second advantage is that the rf power amplifier is operated so that a small change in the voltage applied to its grid circuit will produce a large change in the power developed in its plate circuit.

Rf power amplifiers require that a specific amount of power be fed into the grid circuit. Only in this way can the tube deliver an amplified power output. However, the stable oscillator can produce only limited amounts of power. Therefore, the mopa transmitter is limited in the amount of power it can develop. This is one of the disadvantages of the mopa transmitter. Another disadvantage is that it often is impractical for use at very- and ultra-high frequencies. The reason is that the stability of self-excited oscillators decreases rapidly as the operating frequency increases. Circuit tuning capacitances are small at high frequencies and stray capacitances adversely affect frequency stability.

MULTISTAGE HIGH-POWER TRANSMITTERS. - The power amplifier of a high-power transmitter may require far more driving power than can be supplied by an oscillator. Therefore, one or more low-power intermediate amplifiers may be inserted between the oscillator and the final power amplifier to boost power to the antenna. In some types of equipment, a VOLTAGE AMPLIFIER, called a BUFFER is used between the oscillator and the first intermediate amplifier. The ideal buffer is operated class A and is biased negatively to prevent grid current flow during the excitation cycle. Therefore, it does not require driving power from, nor does it load down, the oscillator. The purpose of the buffer is to isolate the oscillator from the following stages and to minimize changes in oscillator frequency that occur with changes in loading. A buffer is required when keying takes place in an intermediate or final amplifier operating at comparatively high power. Look at the block diagrams of several medium-frequency transmitters in figure 1-30. The input and output powers are given for each stage. You should be able to see that the power output rating of a transmitter can be increased by adding amplifier tubes capable of delivering the power required.

Figure 1-30. - Block diagram of several medium-frequency transmitters.

HF AND VHF TRANSMITTERS. - Oscillators are too unstable for direct frequency control in very- and ultra-high frequency transmitters. Therefore, these transmitters have oscillators operating at comparatively low frequencies, sometimes as low as 1/100 of the output frequency. The oscillator frequency is raised to the required output frequency by passing it through one or more FREQUENCY MULTIPLIERS. Frequency multipliers are special rf power amplifiers which multiply the input frequency. In practice, the MULTIPLICATION FACTOR (number of times the input frequency is multiplied) is seldom larger than five in any one stage. The block diagram of a typical vhf transmitter, designed for continuous tuning between 256 and 288 megahertz, is shown in figure 1-31.

Figure 1-31. - Block diagram of a vhf transmitter.

The stages which multiply the frequency by two are DOUBLERS; those which multiply by four are QUADRUPLERS. The oscillator is tunable from 4 to 4.5 megahertz. The multiplier stages increase the frequency by multiplying successively by 4, 4, 2, and 2, for a total factor of 64. In high-power, high-frequency transmitters, one or more intermediate amplifiers may be used between the last frequency multiplier and the power amplifier.

Q.23 Name a disadvantage of a single-stage cw transmitter.answer.gif (214 bytes)
Q.24 What is the purpose of the power-amplifier stage in a master oscillator power amplifier cw transmitter? answer.gif (214 bytes)
Q.25 What is the purpose of frequency-multiplier stages in a vhf transmitter? answer.gif (214 bytes)







Western Governors University


Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc. - A (SDVOSB) Service Disabled Veteran Owned Small Business