Quantcast Matter

Share on Google+Share on FacebookShare on LinkedInShare on TwitterShare on DiggShare on Stumble Upon
Custom Search


    Matter is defined as anything that occupies space and has weight; that is, the weight and dimensions of matter can be measured. Examples of matter are air, water, automobiles, clothing, and even our own bodies. Thus, we can say that matter may be found in any one of three states: SOLID, LIQUID, and GASEOUS.


    An ELEMENT is a substance which cannot be reduced to a simpler substance by chemical means. Examples of elements with which you are in everyday contact are iron, gold, silver, copper, and oxygen. There are now over 100 known elements. All the different substances we know about are composed of one or more of these elements.

    When two or more elements are chemically combined, the resulting substance is called a COMPOUND. A compound is a chemical combination of elements which can be separated by chemical but not by physical means. Examples of common compounds are water which consists of hydrogen and oxygen, and table salt, which consists of sodium and chlorine. A MIXTURE, on the other hand, is a combination of elements and compounds, not chemically combined, that can be separated by physical means. Examples of mixtures are air, which is made up of nitrogen, oxygen, carbon dioxide, and small amounts of several rare gases, and sea water, which consists chiefly of salt and water.

Q1.What is matter, and in what three states is it found?   Test Yourself
Q2.What is an element?   Test Yourself
Q3.What is a compound?   Test Yourself
Q4.What is the difference between a compound and a mixture?   Test Yourself


    A MOLECULE is a chemical combination of two or more atoms, (atoms are described in the next paragraph). In a compound the molecule is the smallest particle that has all the characteristics of the compound.

    Consider water, for example. Water is matter, since it occupies space and has weight. Depending on the temperature, it may exist as a liquid (water), a solid (ice), or a gas (steam). Regardless of the temperature, it will still have the same composition. If we start with a quantity of water, divide this and pour out one half, and continue this process a sufficient number of times, we will eventually end up with a quantity of water which cannot be further divided without ceasing to be water. This quantity is called a molecule of water. If this molecule of water divided, instead of two parts of water, there will be one part of oxygen and two parts of hydrogen (H2O).


    Molecules are made up of smaller particles called ATOMS. An atom is the smallest particle of an element that retains the characteristics of that element. The atoms of one element, however, differ from the atoms of all other elements. Since there are over 100 known elements, there must be over 100 different atoms, or a different atom for each element. Just as thousands of words can be made by combining the proper letters of the alphabet, so thousands of different materials can be made by chemically combining the proper atoms.

    Any particle that is a chemical combination of two or more atoms is called a molecule. The oxygen molecule consists of two atoms of oxygen, and the hydrogen molecule consists of two atoms of hydrogen. Sugar, on the other hand, is a compound composed of atoms of carbon, hydrogen, and oxygen. These atoms are combined into sugar molecules. Since the sugar molecules can be broken down by chemical means into smaller and simpler units, we cannot have sugar atoms.
The atoms of each element are made up of electrons, protons, and, in most cases, neutrons, which are collectively called subatomic particles. Furthermore, the electrons, protons, and neutrons of one element are identical to those of any other element. The reason that there are different kinds of elements is that the number and the arrangement of electrons and protons within the atom are different for the different elements

    The electron is considered to be a small negative charge of electricity. The proton has a positive charge of electricity equal and opposite to the charge of the electron. Scientists have measured the mass and size of the electron and proton, and they know how much charge each possesses. The electron and proton each have the same quantity of charge, although the mass of the proton is approximately 1837 times that of the electron. In some atoms there exists a neutral particle called a neutron. The neutron has a mass approximately equal to that of a proton, but it has no electrical charge. According to a popular theory, the electrons, protons, and neutrons of the atoms are thought to be arranged in a manner similar to a miniature solar system. The protons and neutrons form a heavy nucleus with a positive charge, around which the very light electrons revolve.

    Figure 1-1 shows one hydrogen and one helium atom. Each has a relatively simple structure. The hydrogen atom has only one proton in the nucleus with one electron rotating about it. The helium atom is a little more complex. It has a nucleus made up of two protons and two neutrons, with two electrons rotating about the nucleus. Elements are classified numerically according to the complexity of their atoms. The atomic number of an atom is determined by the number of protons in its nucleus.

    In a neutral state, an atom contains an equal number of protons and electrons. Therefore, an atom of hydrogen - which contains one proton and one electron - has an atomic number of 1; and helium, with two protons and two electrons, has an atomic number of 2. The complexity of atomic structure increases with the number of protons and electrons.

Q5.What is a molecule?   Test Yourself

Privacy Statement - Copyright Information. - Contact Us

Integrated Publishing, Inc.